Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Malaysian Journal of Medicine and Health Sciences ; : 262-268, 2020.
Article in English | WPRIM | ID: wpr-829546

ABSTRACT

@#Human cartilage contains multipotent stem cells, namely mesenchymal stem cells (MSCs) which are progenitors of connective tissue that play homeostatic and reparative roles. Although the major constituent cells in the cartilage are chondrocytes, they possess a limited regenerative ability, and as a result, spontaneous cartilage repair by chondrocytes leads to the synthesis of fibrocartilage. Similarly, MSCs derived from articular cartilage of osteoarthritis patients have demonstrated inadequacy in cartilage repair. The role of MSCs in the pathophysiology of osteoarthritis (OA) is not entirely understood, whether the inflammatory milieu associated with OA joints affects the reparative properties of MSCs or the inherent defects of OA cartilage-derived MSCs impair the proper execution of the required immunosuppressive and reparative functions. Therefore, the current review explores the biological characteristics and features of MSCs derived from physiological state and OA condition with the aim of identifying how OA affects MSC functions as well as the role of MSCs in the pathophysiology of OA.

2.
Malaysian Journal of Medicine and Health Sciences ; : 2-10, 2018.
Article in English | WPRIM | ID: wpr-750613

ABSTRACT

@#Introduction: Mesenchymal stem cells (MSCs) can be isolated from different tissue sources, and show a high differentiation capacity towards osteogenic, adipogenic, chondrogenic, neurogenic and myogenic lineages upon a specific induction. Although the retrieval of MSCs from normal tissues is very straightforward, yet it could be challenging in degenerative conditions that limit the expansion of stem cells such as osteoarthritis. Thus, this study aimed to establish human MSCs culture from osteoarthritic cartilage (OA hC-MSCs) by optimising the sample processing and culture techniques. Methods: Human osteoarthritis knee cartilage samples were obtained (2-4 g) from 8 patients with a mean age of 62.75 years old during the joint replacement surgery. A conventional culture method carried along with the modified method where the period of enzyme digestion and serial plating culture procedure were incorporated. Results: The modified culture method has significantly increased the number of single cells twice after the sample processing. The time taken to form colonies and achieve confluence was also reduced when samples subjected to the modified method. The number of cell yields after passage 0 for the conventional and modified methods were 3.05±0.31 and 6.10±0.42 million cells, respectively. The adherent cells generated under these two conditions comply with criteria for MSCs in term of immunophenotyping and mesodermal differentiation. Conclusions: The current modified method enhances the production of MSCs and could be opted for samples that known to have reduced or defective stem cell pool which may impede the in vitro cell expansion.


Subject(s)
Osteoarthritis
SELECTION OF CITATIONS
SEARCH DETAIL